# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
# Faculty of Electrical Engineering,
# University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################
from typing import Tuple, List
import numpy as np
from xopto.mcml.mcdetector.base import Detector
from xopto.mcml import cltypes, mctypes, mcobject
from xopto.mcml.mcutil.fiber import MultimodeFiber, FiberLayout
from xopto.mcml.mcutil import geometry
[docs]class FiberArray(Detector):
[docs] def cl_type(self, mc: mcobject.McObject) -> cltypes.Structure:
T = mc.types
n = self.n
class ClFiberArray(cltypes.Structure):
'''
Structure that that represents a detector in the Monte Carlo
simulator core.
Fields
------
transformation: mc_point3f_t*n
Transforms coordinates from Monte Carlo to the detector / fiber
coordinates for each fiber.
core_position: mc_point2f_t*n
Position of the individual fibers.
core_r_squared: mc_fp_t*n
Squared radius of the optical fibers.
cos_min: mc_fp_t*n
Cosine of the maximum acceptance angle (in the detector / fiber
coordinate space).
offset: mc_int_t
The offset of the first accumulator in the Monte Carlo
detector buffer.
'''
_fields_ = [
('transformation', T.mc_matrix3f_t*n),
('core_position', T.mc_point2f_t*n),
('core_r_squared', T.mc_fp_t*n),
('cos_min', T.mc_fp_t*n),
('offset', T.mc_size_t),
]
return ClFiberArray
[docs] def cl_declaration(self, mc: mcobject.McObject) -> str:
'''
Structure that defines the detector in the Monte Carlo simulator.
'''
loc = self.location
Loc = loc.capitalize()
n = self.n
return '\n'.join((
'struct MC_STRUCT_ATTRIBUTES Mc{}Detector{{'.format(Loc),
' mc_matrix3f_t transformation[{}];'.format(n),
' mc_point2f_t core_position[{}];'.format(n),
' mc_fp_t core_r_squared[{}];'.format(n),
' mc_fp_t cos_min[{}];'.format(n),
' mc_size_t offset;',
'};'
))
[docs] def cl_implementation(self, mc: mcobject.McObject) -> str:
'''
Implementation of the detector in the Monte Carlo simulator.
'''
loc = self.location
Loc = loc.capitalize()
n = self.n
return '\n'.join((
'void dbg_print_{}_detector(__mc_detector_mem const Mc{}Detector *detector){{'.format(loc, Loc),
' dbg_print("Mc{}Detector - FiberArray fiber array detector:");'.format(Loc),
' for(mc_size_t index=0; index < {}; ++index){{'.format(n),
' dbg_print_size_t(INDENT "Fiber index:", index);',
' dbg_print_matrix3f(INDENT INDENT "transformation:", &detector->transformation[index]);',
' dbg_print_point2f(INDENT INDENT "core_position:", &detector->core_position[index]);',
' dbg_print_float(INDENT INDENT "core_r_squared (mm2):", detector->core_r_squared[index]*1e6f);',
' dbg_print_float(INDENT INDENT "cos_min:", detector->cos_min[index]);',
' };',
' dbg_print_size_t(INDENT "offset:", detector->offset);',
'};',
'',
'inline void mcsim_{}_detector_deposit('.format(loc),
' McSim *mcsim, ',
' mc_point3f_t const *pos, mc_point3f_t const *dir, ',
' mc_fp_t weight){',
'',
' __global mc_accu_t *address;',
'',
' dbg_print_status(mcsim, "{} FiberArray fiber array detector hit");'.format(loc),
'',
' __mc_detector_mem const Mc{}Detector *detector = '.format(Loc),
' mcsim_{}_detector(mcsim);'.format(loc),
'',
'',
' mc_size_t fiber_index = {}; /* invalid index ... no fiber hit */'.format(n),
'',
' mc_fp_t dx, dy, r_squared;',
' mc_point3f_t mc_pos, detector_pos;',
'',
' pragma_unroll_hint({})'.format(n),
' for(mc_size_t index=0; index < {}; ++index){{'.format(n),
' mc_pos.x = pos->x - detector->core_position[index].x;',
' mc_pos.y = pos->y - detector->core_position[index].y;',
' mc_pos.z = FP_0;',
'',
' mc_matrix3f_t transformation = detector->transformation[index];',
' transform_point3f(&transformation, &mc_pos, &detector_pos);',
' dx = detector_pos.x;',
' dy = detector_pos.y;',
' r_squared = dx*dx + dy*dy;',
'',
' if (r_squared <= detector->core_r_squared[index]){',
' /* hit this fiber */',
' fiber_index = index;',
' break;',
' };',
' };',
'',
' if (fiber_index >= {})'.format(n),
' return;',
'',
' address = mcsim_accumulator_buffer_ex(',
' mcsim, detector->offset + fiber_index);',
'',
' /* Transfor direction vector component z into the detector space. */',
' mc_fp_t pz = transform_point3f_z(',
' &detector->transformation[fiber_index], dir);',
' dbg_print_float("Packet direction z:", pz);',
' uint32_t ui32w = weight_to_int(weight)*',
' (detector->cos_min[fiber_index] <= mc_fabs(pz));',
'',
' if (ui32w > 0){',
' dbg_print("{} FiberArray fiber array detector depositing:");'.format(loc),
' dbg_print_uint(INDENT "uint weight:", ui32w);',
' dbg_print_size_t(INDENT "to fiber index:", fiber_index);',
' accumulator_deposit(address, ui32w);',
' };',
'};',
))
def __init__(self, fibers: List[FiberLayout]):
'''
Optical fiber probe detector with an array of optical fibers that
are optionally tilted(direction parameter). The optical fibers are
always polished in a way that forms a tight optical contact with
the surface of the sample.
Parameters
----------
fiber: List[FiberLayout]
List of optical fiber configuration that form the fiber array.
'''
if isinstance(fibers, FiberArray):
la = fibers
fibers = la.fibers
raw_data = np.copy(la.raw)
nphotons = la.nphotons
else:
nphotons = 0
raw_data = np.zeros((len(fibers),))
super().__init__(raw_data, nphotons)
self._fibers = fibers
[docs] def update(self, other: 'FiberArray' or dict):
'''
Update this detector configuration from the other detector. The
other detector must be of the same type as this detector or a dict with
appropriate fields.
Parameters
----------
other: FiberArray or dict
This source is updated with the configuration of the other source.
'''
if isinstance(other, FiberArray):
self.fibers = other.fibers
elif isinstance(other, dict):
self.fibers = other.get('fibers', self.fibers)
def _get_fibers(self) -> List[FiberLayout]:
return self._fibers
def _set_fibers(self, fibers: List[FiberLayout]):
if len(self._fibers) != len(fibers):
raise ValueError('The number of optical fibers must not change!')
if type(self._fibers[0]) != type(fibers[0]):
raise TypeError('The type of optical fibers must not change!')
self._fibers[:] = fibers
fibers = property(_get_fibers, _set_fibers, None,
'List of optical fibers.')
def _get_n_fiber(self) -> int:
return len(self._fibers)
n = property(_get_n_fiber, None, None,
'Number of optical fiber in the array.')
def __len__(self):
return len(self._fibers)
def __iter__(self):
return iter(self._fibers)
[docs] def check(self):
'''
Check if the configuration has errors and raise exceptions if so.
'''
for fiber_cfg in self._fibers:
for other_cfg in self._fibers:
if other_cfg != fiber_cfg:
d = np.linalg.norm(fiber_cfg.position - other_cfg.position)
if d < max(fiber_cfg.fiber.dcladding, other_cfg.fiber.dcladding):
raise ValueError('Some of the fibers in the '
'detector array overlap!')
return True
[docs] def fiber_position(self, index: int) -> Tuple[float, float]:
'''
Returns the position of the fiber center as a tuple (x, y).
Parameters
----------
index: int
Fiber index from 0 to n -1.
Returns
-------
position: (float, float)
The position of the fiber center as a tuple (x, y).
'''
n = len(self._fibers)
if index >= n or index < -n:
raise IndexError('The fiber index is out of valid range!')
return tuple(self._fibers[index].position[:2])
def __getitem__(self, what):
return self._fibers[what]
def __setitem__(self, what, value: FiberLayout or List[FiberLayout]):
self._fibers[what] = value
def _get_normalized(self) -> np.ndarray:
return self.raw*(1.0/max(self.nphotons, 1.0))
normalized = property(_get_normalized, None, None, 'Normalized.')
reflectance = property(_get_normalized, None, None, 'Reflectance.')
transmittance = property(_get_normalized, None, None, 'Transmittance.')
[docs] def cl_pack(self, mc: mcobject.McObject,
target : cltypes.Structure = None) -> cltypes.Structure:
'''
Fills the structure (target) with the data required by the
Monte Carlo simulator.
See the :py:meth:`FiberArray.cl_type` method for a detailed list
of fields.
Parameters
----------
mc: mcobject.McObject
Monte Carlo simulator instance.
target: cltypes.Structure
Ctypes structure that is filled with the source data.
Returns
-------
target: cltypes.Structure
Filled structure received as an input argument or a new
instance if the input argument target is None.
'''
if target is None:
target_type = self.cl_type(mc)
target = target_type()
for index, fiber_cfg in enumerate(self._fibers):
adir = fiber_cfg.direction[0], fiber_cfg.direction[1], \
abs(fiber_cfg.direction[2])
T = geometry.transform_base(adir, (0.0, 0.0, 1.0))
cos_min = (1.0 - (fiber_cfg.fiber.na/fiber_cfg.fiber.ncore)**2)**0.5
core_r_squared = 0.25*fiber_cfg.fiber.dcore**2
target.transformation[index].fromarray(T)
target.core_position[index].fromarray(fiber_cfg.position)
target.core_r_squared[index] = core_r_squared
target.cos_min[index] = cos_min
allocation = mc.cl_allocate_rw_accumulator_buffer(self, self.shape)
target.offset = allocation.offset
return target
[docs] def todict(self):
'''
Save the accumulator configuration without the accumulator data to
a dictionary. Use the :meth:`FiberArray.fromdict` method to create a new
accumulator instance from the returned data.
Returns
-------
data: dict
Accumulator configuration as a dictionary.
'''
return {
'type':'FiberArray',
'fibers': [item.todict() for item in self._fibers],
}
[docs] @staticmethod
def fromdict(data):
'''
Create an accumulator instance from a dictionary.
Parameters
----------
data: dict
Dictionary created by the :py:meth:`FiberArray.todict` method.
'''
detector_type = data.pop('type')
if detector_type != 'FiberArray':
raise TypeError(
'Expected a "FiberArray" type bot got "{}"!'.format(
detector_type))
fibers = data.pop('fibers')
fibers = [FiberLayout.fromdict(item) for item in fibers]
return FiberArray(fibers, **data)
def __str__(self):
return 'FiberArray(fibers={})'.format(self._fibers)
def __repr__(self):
return '{} #{}'.format(self.__str__(), id(self))