Source code for xopto.mcml.mcdetector.probe.fiberlutarray

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

from typing import Tuple, List

import numpy as np

from xopto.mcml.mcdetector.base import Detector
from xopto.mcml import cltypes, mctypes, mcobject, mcoptions
from xopto.mcml.mcutil.fiber import MultimodeFiberLut, FiberLayout
from xopto.mcml.mcutil import geometry
from xopto.mcml.mcutil.lut import CollectionLut

[docs]class FiberLutArray(Detector):
[docs] def cl_type(self, mc: mcobject.McObject) -> cltypes.Structure: T = mc.types n = self.n class ClFiberLutArray(cltypes.Structure): ''' Structure that that represents a detector in the Monte Carlo simulator core. Fields ------ transformation: mc_point3f_t*n Transforms coordinates from Monte Carlo to the detector / fiber coordinates for each fiber. core_position: mc_point2f_t*n Position of the individual fibers. core_r_squared: mc_fp_t*n Squared radius of the optical fibers. lut: mc_fp_lut_t*n Detector angular sensitivity lookup table. The lookup table is sampled with the absolute value of the incidence angle cosine computed relative to the detector reference direction.). offset: mc_int_t The offset of the first accumulator in the Monte Carlo detector buffer. ''' _fields_ = [ ('transformation', T.mc_matrix3f_t*n), ('core_position', T.mc_point2f_t*n), ('core_r_squared', T.mc_fp_t*n), ('lut', CollectionLut.cl_type(mc)*n), ('offset', T.mc_size_t), ] return ClFiberLutArray
[docs] def cl_declaration(self, mc: mcobject.McObject) -> str: ''' Structure that defines the detector in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() n = self.n return '\n'.join(( 'struct MC_STRUCT_ATTRIBUTES Mc{}Detector{{'.format(Loc), ' mc_matrix3f_t transformation[{}];'.format(n), ' mc_point2f_t core_position[{}];'.format(n), ' mc_fp_t core_r_squared[{}];'.format(n), ' mc_fp_lut_t lut[{}];'.format(n), ' mc_size_t offset;', '};' ))
[docs] def cl_implementation(self, mc: mcobject.McObject) -> str: ''' Implementation of the detector in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() n = self.n return '\n'.join(( 'void dbg_print_{}_detector(__mc_detector_mem const Mc{}Detector *detector){{'.format(loc, Loc), ' dbg_print("Mc{}Detector - FiberLutArray fiber array detector:");'.format(Loc), ' for(mc_size_t index=0; index < {}; ++index){{'.format(n), ' dbg_print_size_t(INDENT "Fiber index:", index);', ' dbg_print_matrix3f(INDENT INDENT "transformation:", &detector->transformation[index]);', ' dbg_print_point2f(INDENT INDENT "core_position:", &detector->core_position[index]);', ' dbg_print_float(INDENT INDENT "core_r_squared (mm2):", detector->core_r_squared[index]*1e6f);', ' dbg_print_fp_lut(INDENT "lut:", &detector->lut[index]);', ' };', ' dbg_print_size_t(INDENT "offset:", detector->offset);', '};', '', 'inline void mcsim_{}_detector_deposit('.format(loc), ' McSim *mcsim, ', ' mc_point3f_t const *pos, mc_point3f_t const *dir, ', ' mc_fp_t weight){', '', ' __global mc_accu_t *address;', '', ' dbg_print_status(mcsim, "{} FiberLutArray fiber array detector hit");'.format(Loc), '', ' __mc_detector_mem const Mc{}Detector *detector = '.format(Loc), ' mcsim_{}_detector(mcsim);'.format(loc), '', '', ' mc_size_t fiber_index = {}; /* invalid index ... no fiber hit */'.format(n), '', ' mc_fp_t dx, dy, r_squared;', ' mc_point3f_t mc_pos, detector_pos;', '', ' pragma_unroll_hint({})'.format(n), ' for(mc_size_t index=0; index < {}; ++index){{'.format(n), ' mc_pos.x = pos->x - detector->core_position[index].x;', ' mc_pos.y = pos->y - detector->core_position[index].y;', ' mc_pos.z = FP_0;', '', ' mc_matrix3f_t transformation = detector->transformation[index];', ' transform_point3f(&transformation, &mc_pos, &detector_pos);', ' dx = detector_pos.x;', ' dy = detector_pos.y;', ' r_squared = dx*dx + dy*dy;', '', ' if (r_squared <= detector->core_r_squared[index]){', ' /* hit this fiber */', ' fiber_index = index;', ' break;', ' };', ' };', '', ' if (fiber_index >= {})'.format(n), ' return;', '', ' address = mcsim_accumulator_buffer_ex(', ' mcsim, detector->offset + fiber_index);', '', ' /* Transfor direction vector component z into the detector space. */', ' mc_fp_t pz = transform_point3f_z(', ' &detector->transformation[fiber_index], dir);', ' dbg_print_float("Packet direction z:", pz);', '', ' mc_fp_t sensitivity = FP_0;', ' fp_linear_lut_sample(mcsim_fp_lut_array(mcsim),', ' &detector->lut[fiber_index], mc_fabs(pz), &sensitivity);', ' dbg_print_float("{} MultimodeFiberLut sensitivity:", sensitivity);'.format(Loc), '', ' uint32_t ui32w = weight_to_int(weight*sensitivity);', '', ' if (ui32w > 0){', ' dbg_print("{} FiberLutArray fiber array detector depositing:");'.format(loc), ' dbg_print_uint(INDENT "uint weight:", ui32w);', ' dbg_print_size_t(INDENT "to fiber index:", fiber_index);', ' accumulator_deposit(address, ui32w);', ' };', '};', ))
[docs] @staticmethod def cl_options(mc: mcobject.McObject) -> mcoptions.RawOptions: ''' This source uses lookup table of floating-point data. ''' return [('MC_USE_FP_LUT', True)]
def __init__(self, fibers: List[FiberLayout]): ''' Optical fiber probe detector with an array of optical fibers that are optionally tilted(direction parameter). The optical fibers are always polished in a way that forms a tight optical contact with the surface of the sample. Parameters ---------- fiber: List[FiberLayout] List of optical fiber configuration that form the fiber array. ''' if isinstance(fibers, FiberLutArray): la = fibers fibers = la.fibers raw_data = np.copy(la.raw) nphotons = la.nphotons else: nphotons = 0 raw_data = np.zeros((len(fibers),)) super().__init__(raw_data, nphotons) self._fibers = fibers
[docs] def update(self, other: 'FiberLutArray' or dict): ''' Update this detector configuration from the other detector. The other detector must be of the same type as this detector or a dict with appropriate fields. Parameters ---------- other: FiberLutArray or dict This source is updated with the configuration of the other source. ''' if isinstance(other, FiberLutArray): self.fibers = other.fibers elif isinstance(other, dict): self.fibers = other.get('fibers', self.fibers)
def _get_fibers(self) -> List[FiberLayout]: return self._fibers def _set_fibers(self, fibers: List[FiberLayout]): if len(self._fibers) != len(fibers): raise ValueError('The number of optical fibers must not change!') if type(self._fibers[0]) != type(fibers[0]): raise TypeError('The type of optical fibers must not change!') self._fibers[:] = fibers fibers = property(_get_fibers, _set_fibers, None, 'List of optical fibers.') def _get_n_fiber(self) -> int: return len(self._fibers) n = property(_get_n_fiber, None, None, 'Number of optical fiber in the array.') def __len__(self): return len(self._fibers) def __iter__(self): return iter(self._fibers)
[docs] def check(self): ''' Check if the configuration has errors and raise exceptions if so. ''' for fiber_cfg in self._fibers: for other_cfg in self._fibers: if other_cfg != fiber_cfg: d = np.linalg.norm(fiber_cfg.position - other_cfg.position) if d < max(fiber_cfg.fiber.dcladding, other_cfg.fiber.dcladding): raise ValueError('Some of the fibers in the ' 'detector array overlap!') return True
[docs] def fiber_position(self, index: int) -> Tuple[float, float]: ''' Returns the position of the fiber center as a tuple (x, y). Parameters ---------- index: int Fiber index from 0 to n -1. Returns ------- position: (float, float) The position of the fiber center as a tuple (x, y). ''' n = len(self._fibers) if index >= n or index < -n: raise IndexError('The fiber index is out of valid range!') return tuple(self._fibers[index].position[:2])
def __getitem__(self, what): return self._fibers[what] def __setitem__(self, what, value: FiberLayout or List[FiberLayout]): self._fibers[what] = value def _get_normalized(self) -> np.ndarray: return self.raw*(1.0/max(self.nphotons, 1.0)) normalized = property(_get_normalized, None, None, 'Normalized.') reflectance = property(_get_normalized, None, None, 'Reflectance.') transmittance = property(_get_normalized, None, None, 'Transmittance.')
[docs] def cl_pack(self, mc: mcobject.McObject, target : cltypes.Structure = None) -> cltypes.Structure: ''' Fills the structure (target) with the data required by the Monte Carlo simulator. See the :py:meth:`FiberLutArray.cl_type` method for a detailed list of fields. Parameters ---------- mc: mcobject.McObject Monte Carlo simulator instance. target: cltypes.Structure Ctypes structure that is filled with the source data. Returns ------- target: cltypes.Structure Filled structure received as an input argument or a new instance if the input argument target is None. ''' if target is None: target_type = self.cl_type(mc) target = target_type() for index, fiber_cfg in enumerate(self._fibers): adir = fiber_cfg.direction[0], fiber_cfg.direction[1], \ abs(fiber_cfg.direction[2]) T = geometry.transform_base(adir, (0.0, 0.0, 1.0)) core_r_squared = 0.25*fiber_cfg.fiber.dcore**2 target.transformation[index].fromarray(T) target.core_position[index].fromarray(fiber_cfg.position) target.core_r_squared[index] = core_r_squared fiber_cfg.fiber.collection.cl_pack(mc, target.lut[index]) allocation = mc.cl_allocate_rw_accumulator_buffer(self, self.shape) target.offset = allocation.offset return target
[docs] def todict(self): ''' Save the accumulator configuration without the accumulator data to a dictionary. Use the :meth:`FiberLutArray.fromdict` method to create a new accumulator instance from the returned data. Returns ------- data: dict Accumulator configuration as a dictionary. ''' return { 'type':'FiberLutArray', 'fibers': [item.todict() for item in self._fibers], }
[docs] @staticmethod def fromdict(data): ''' Create an accumulator instance from a dictionary. Parameters ---------- data: dict Dictionary created by the :py:meth:`FiberLutArray.todict` method. ''' detector_type = data.pop('type') if detector_type != 'FiberLutArray': raise TypeError( 'Expected a "FiberLutArray" type bot got "{}"!'.format( detector_type)) fibers = data.pop('fibers') fibers = [FiberLayout.fromdict(item) for item in fibers] return FiberLutArray(fibers, **data)
def __str__(self): return 'FiberLutArray(fibers={})'.format(self._fibers) def __repr__(self): return '{} #{}'.format(self.__str__(), id(self))