Source code for xopto.mcml.mcdetector.probe.lineararraypl

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

from typing import Tuple

import numpy as np

from xopto.mcml.mcdetector.base import Detector
from xopto.mcml import cltypes, mctypes, mcobject, mcoptions
from xopto.mcml.mcutil.fiber import MultimodeFiber
from xopto.mcml.mcutil import geometry
from xopto.mcml.mcutil import axis

[docs]class LinearArrayPl(Detector):
[docs] @staticmethod def cl_type(mc: mcobject.McObject) -> cltypes.Structure: T = mc.types class ClLinearArrayPl(cltypes.Structure): ''' Structure that that represents a detector in the Monte Carlo simulator core. Fields ------ transformation: mc_point3f_t Transforms coordinates from Monte Carlo to the detector. first_position: mc_point2f_t The center of the first optical fiber in the array. delta_position: mc_point2f_t Distance vector between two neighboring optical fibers. core_r_squared: mc_fp_t Squared radius of the optical fibers. cos_min: mc_fp_t Cosine of the maximum acceptance angle (in the detector coordinate space). pl_min: mc_fp_t The leftmost edge of the first optical path length accumulator. inv_dpl: mc_fp_t Inverse of the width of the optical path length accumulators. n_pl: mc_size_t The number of path length accumulators. offset: mc_int_t The offset of the first accumulator in the Monte Carlo detector buffer. pl_log_scale: mc_int_t A flag indicating logarithmic scale of the path length axis. ''' _fields_ = [ ('transformation', T.mc_matrix3f_t), ('first_position', T.mc_point2f_t), ('delta_position', T.mc_point2f_t), ('core_r_squared', T.mc_fp_t), ('cos_min', T.mc_fp_t), ('pl_min', T.mc_fp_t), ('inv_dpl', T.mc_fp_t), ('n_pl', T.mc_size_t), ('offset', T.mc_size_t), ('pl_log_scale', T.mc_int_t), ] return ClLinearArrayPl
[docs] def cl_declaration(self, mc: mcobject.McObject) -> str: ''' Structure that defines the detector in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() return '\n'.join(( 'struct MC_STRUCT_ATTRIBUTES Mc{}Detector{{'.format(Loc), ' mc_matrix3f_t transformation;' ' mc_point2f_t first_position;' ' mc_point2f_t delta_position;' ' mc_fp_t core_r_squared;', ' mc_fp_t cos_min;', ' mc_fp_t pl_min;', ' mc_fp_t inv_dpl;', ' mc_size_t n_pl;', ' mc_size_t offset;', ' mc_int_t pl_log_scale;', '};' ))
[docs] def cl_implementation(self, mc: mcobject.McObject) -> str: ''' Implementation of the detector accumulator in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() n = self._n return '\n'.join(( 'void dbg_print_{}_detector(__mc_detector_mem const Mc{}Detector *detector){{'.format(loc, Loc), ' dbg_print("Mc{}Detector - LinearArrayPl fiber array detector:");'.format(Loc), ' dbg_print_matrix3f(INDENT "transformation:", &detector->transformation);', ' dbg_print_point2f(INDENT "first_position:", &detector->first_position);', ' dbg_print_point2f(INDENT "delta_position:", &detector->delta_position);', ' dbg_print_float(INDENT "core_r_squared (mm2):", detector->core_r_squared*1e6f);', ' dbg_print_float(INDENT "cos_min:", detector->cos_min);', ' dbg_print_float(INDENT "pl_min (um)", detector->pl_min*1e6f);', ' dbg_print_float(INDENT "inv_dpl (1/um)", detector->inv_dpl*1e-6f);', ' dbg_print_size_t(INDENT "n_pl:", detector->n_pl);', ' dbg_print_size_t(INDENT "offset:", detector->offset);', ' dbg_print_int(INDENT "pl_log_scale:", detector->pl_log_scale);', '};', '', 'inline void mcsim_{}_detector_deposit('.format(loc), ' McSim *mcsim, ', ' mc_point3f_t const *pos, mc_point3f_t const *dir, ', ' mc_fp_t weight){', '', ' __global mc_accu_t *address;', '', ' dbg_print_status(mcsim, "{} LinearArrayPl fiber array detector hit");'.format(Loc), '', ' __mc_detector_mem const Mc{}Detector *detector = '.format(Loc), ' mcsim_{}_detector(mcsim);'.format(loc), '', ' mc_size_t fiber_index = {}; /* invalid index ... no fiber hit */'.format(n), '', ' mc_fp_t dx, dy, r_squared;', ' mc_point3f_t mc_pos, detector_pos;', ' mc_fp_t fiber_x = detector->first_position.x;', ' mc_fp_t fiber_y = detector->first_position.y;', '', ' pragma_unroll_hint({})'.format(n), ' for(mc_size_t index=0; index < {}; ++index){{'.format(n), ' mc_pos.x = pos->x - fiber_x;', ' mc_pos.y = pos->y - fiber_y;', ' mc_pos.z = FP_0;', '', ' mc_matrix3f_t transformation = detector->transformation;', ' transform_point3f(&transformation, &mc_pos, &detector_pos);', ' dx = detector_pos.x;', ' dy = detector_pos.y;', ' r_squared = dx*dx + dy*dy;', '', ' if (r_squared <= detector->core_r_squared){', ' /* hit this fiber */', ' fiber_index = index;', ' break;', ' };', '', ' fiber_x += detector->delta_position.x;', ' fiber_y += detector->delta_position.y;', ' };', '', ' if (fiber_index >= {})'.format(n), ' return;', '', ' mc_fp_t pl = mcsim_optical_pathlength(mcsim);', ' if (detector->pl_log_scale)', ' pl = mc_log(mc_fmax(pl, FP_PLMIN));', ' mc_int_t pl_index = mc_int((pl - detector->pl_min)*detector->inv_dpl);', ' pl_index = mc_clip(pl_index, 0, detector->n_pl - 1);', '', ' mc_size_t index = pl_index*{} + fiber_index;'.format(n), '', ' address = mcsim_accumulator_buffer_ex(', ' mcsim, detector->offset + index);', '', ' /* Transfor direction vector component z into the detector space. */', ' mc_fp_t pz = transform_point3f_z(&detector->transformation, dir);', ' dbg_print_float("Packet direction z:", pz);', ' uint32_t ui32w = weight_to_int(weight)*', ' (detector->cos_min <= mc_fabs(pz));', '', ' if (ui32w > 0){', ' dbg_print("{} LinearArrayPl fiber array detector depositing:");'.format(Loc), ' dbg_print_uint(INDENT "uint weight:", ui32w);', ' dbg_print_size_t(INDENT "to fiber index:", fiber_index);', ' accumulator_deposit(address, ui32w);', ' };', '};', ))
[docs] def cl_options(self, mc, target=None) -> mcoptions.RawOptions: ''' OpenCL kernel options defined by this object. ''' return [('MC_TRACK_OPTICAL_PATHLENGTH', True)]
def __init__(self, fiber: MultimodeFiber, n=1, spacing: float = None, plaxis: axis.Axis = None, orientation: Tuple[float, float] = (1.0, 0.0), position: Tuple[float, float] = (0.0, 0.0), direction: Tuple[float, float, float] = (0.0, 0.0, 1.0)): ''' Optical fiber probe detector with a linear array of optical fibers that are optionally tilted(direction parameter). The optical fibers are always polished in a way that forms a tight optical contact with the surface of the sample. Parameters ---------- fiber: MultimodeFiber Optical properties of the fibers. n: int The number of optical fibers in the linear array. This option is a compile-time feature and caanot be changed once the detector object is created. spacing: float Spacing between the optical fibers. If spacing is None, a tight layout is used with spacing set to the outer diameter of the fiber cladding. plaxis: axis.Axis Object that defines the accumulators along the optical path length axis (this axis supports log-scale). orientation: (float, float) Vector that points in the direction of the linear fiber array. By default the fibers are place in the direction of x axis, i.e. vector (1.0, 0.0). The orientation must point in the direction from the first to the last optical fiber! position: (float, float) Position of the center of the linear fiber array. direction: (float, float, float) Reference direction / orientation of the detector fibers. Fibers are oriented in this direction and polished to form a tight optical contact with the sample (the fiber cross sections are ellipsoids if the direction is not perpendicular, i.e different from (0, 0, 1). ''' if isinstance(fiber, LinearArrayPl): la = fiber fiber = la.fiber n = la.n spacing = la.spacing orientation = la.orientation position = la.position direction = la.direction nphotons = la.nphotons raw_data = np.copy(la.raw) plaxis = la.plaxis else: if plaxis is None: plaxis = axis.Axis(0.0, 1.0, 1) nphotons = 0 n = max(int(n), 1) raw_data = np.zeros((plaxis.n, n)) if spacing is None: spacing = fiber.dcladding super().__init__(raw_data, nphotons) self._n = 0 self._fiber = None self._spacing = 0.0 self._orientation = np.array((1.0, 0.0)) self._direction = np.array((0.0, 0.0, 1.0)) self._position = np.array((0.0, 0.0)) self._pl_axis = plaxis self._set_fiber(fiber) self._n = max(int(n), 1) self._set_spacing(spacing) self._set_orientation(orientation) self._set_position(position) self._set_direction(direction)
[docs] def update(self, other: 'LinearArrayPl' or dict): ''' Update this detector configuration from the other detector. The other detector must be of the same type as this detector or a dict with appropriate fields. Parameters ---------- other: LinearArrayPl or dict This source is updated with the configuration of the other source. ''' if isinstance(other, LinearArrayPl): self.fiber = other.fiber self.spacing = other.spacing self.orientation = other.orientation self.position = other.position self.direction = other.direction elif isinstance(other, dict): self.fiber = other.get('fiber', self.fiber) self.spacing = other.get('spacing', self.spacing) self.orientation = other.get('orientation', self.orientation) self.position = other.get('position', self.position) self.direction = other.get('direction', self.direction)
def _get_fiber(self) -> Tuple[float, float]: return self._fiber def _set_fiber(self, value: float or Tuple[float, float]): self._fiber = value fiber = property(_get_fiber, _set_fiber, None, 'Properties of the optical fibers used by the detector.') def _get_n_fiber(self) -> int: return self._n n = property(_get_n_fiber, None, None, 'Number of optical fiber in the linear array.') def _get_spacing(self) -> float: return self._spacing def _set_spacing(self, value:float): self._spacing = float(value) spacing = property(_get_spacing, _set_spacing, None, 'Spacing between the centers of the optical fibers') def _get_orientation(self) -> Tuple[float, float]: return self._orientation def _set_orientation(self, orientation: Tuple[float, float]): self._orientation[:] = orientation norm = np.linalg.norm(self._orientation) if norm == 0.0: raise ValueError('Orientation vector norm/length must not be 0!') self._orientation *= 1.0/norm orientation = property(_get_orientation, _set_orientation, None, 'Orientation / direction of the linear fiber array.') def _get_position(self) -> Tuple[float, float]: return self._position def _set_position(self, value: float or Tuple[float, float]): self._position[:] = value position = property(_get_position, _set_position, None, 'Position of the fiber array center as a tuple (x, y).') def _get_direction(self) -> Tuple[float, float, float]: return self._direction def _set_direction(self, direction: Tuple[float, float, float]): self._direction[:] = direction norm = np.linalg.norm(self._direction) if norm == 0.0: raise ValueError('Direction vector norm/length must not be 0!') self._direction *= 1.0/norm direction = property(_get_direction, _set_direction, None, 'Detector reference direction.') def _get_plaxis(self) -> axis.Axis: return self._pl_axis plaxis = property(_get_plaxis, None, None, 'Path length axis object.') def _get_pl(self): return self._pl_axis.centers pl = property(_get_pl, None, None, 'Centers of the optical pathlength axis accumulators.') def _get_pledges(self): return self._pl_axis.edges pledges = property(_get_pledges, None, None, 'Edges of the optical pathlength axis accumulators.') def _get_npl(self): return self._pl_axis.n npl = property(_get_npl, None, None, 'Number of accumulators in the optical pathlength axis.')
[docs] def check(self): ''' Check if the configuration has errors and raise exceptions if so. ''' if self._spacing < self.fiber.dcore: raise ValueError('Spacing between the optical fibers is smaller ' 'than the diameter of the fiber core!') return True
[docs] def fiber_position(self, index: int) -> Tuple[float, float]: ''' Returns the position of the fiber center as a tuple (x, y). Parameters ---------- index: int Fiber index from 0 to n -1. Returns ------- position: (float, float) The position of the fiber center as a tuple (x, y). ''' if index >= self._n or index < -self._n: raise IndexError('The fiber index is out of valid range!') left = self._position - self._orientation*self._spacing*(self._n - 1)*0.5 return tuple(left + self._spacing*self._orientation*int(index))
def _get_normalized(self) -> np.ndarray: return self.raw*(1.0/max(self.nphotons, 1.0)) normalized = property(_get_normalized, None, None, 'Normalized.') reflectance = property(_get_normalized, None, None, 'Reflectance.') transmittance = property(_get_normalized, None, None, 'Transmittance.')
[docs] def cl_pack(self, mc: mcobject.McObject, target: cltypes.Structure = None) -> cltypes.Structure: ''' Fills the structure (target) with the data required by the Monte Carlo simulator. See the :py:meth:`LinearArrayPl.cl_type` method for a detailed list of fields. Parameters ---------- mc: mcobject.McObject Monte Carlo simulator instance. target: cltypes.Structure Ctypes structure that is filled with the source data. Returns ------- target: cltypes.Structure Filled structure received as an input argument or a new instance if the input argument target is None. ''' if target is None: target_type = self.cl_type(mc) target = target_type() allocation = mc.cl_allocate_rw_accumulator_buffer(self, self.shape) target.offset = allocation.offset adir = self._direction[0], self._direction[1], abs(self._direction[2]) T = geometry.transform_base(adir, (0.0, 0.0, 1.0)) target.transformation.fromarray(T) target.core_r_squared = 0.25*self.fiber.dcore**2 target.cos_min = (1.0 - (self._fiber.na/self._fiber.ncore)**2)**0.5 target.first_position.fromarray(self.fiber_position(0)) target.delta_position.fromarray(self._orientation*self._spacing) target.pl_min = self._pl_axis.scaled_start if self._pl_axis.step != 0.0: target.inv_dpl = 1.0/self._pl_axis.step else: target.inv_dpl = 0.0 target.pl_log_scale = self._pl_axis.logscale target.n_pl = self._pl_axis.n return target
[docs] def todict(self) -> dict: ''' Save the accumulator configuration without the accumulator data to a dictionary. Use the :meth:`LinearArrayPl.fromdict` method to create a new accumulator instance from the returned data. Returns ------- data: dict Accumulator configuration as a dictionary. ''' return { 'type':'LinearArrayPl', 'fiber': self._fiber.todict(), 'n': self._n, 'orientation': self._orientation, 'spacing': self._spacing, 'position':self._position.tolist(), 'direction':self.direction.tolist(), 'pl_axis': self.plaxis.todict(), }
[docs] @staticmethod def fromdict(data) -> 'LinearArrayPl': ''' Create an accumulator instance from a dictionary. Parameters ---------- data: dict Dictionary created by the :py:meth:`LinearArrayPl.todict` method. ''' detector_type = data.pop('type') if detector_type != 'LinearArrayPl': raise TypeError( 'Expected a "LinearArrayPl" type bot got "{}"!'.format( detector_type)) fiber = data.pop('fiber') fiber = MultimodeFiber.fromdict(fiber) pl_axis_data = data.pop('pl_axis') pl_axis_type = pl_axis_data.pop('type') plaxis = getattr(axis, pl_axis_type)(**pl_axis_data) return LinearArrayPl(fiber, plaxis=plaxis, **data)
def __str__(self): return 'LinearArrayPl(fiber={}, n={}, spacing={}, plaxis={}, ' \ 'orientation=({}, {}), position=({}, {}), ' \ 'direction=({}, {}, {}))'.format( self._fiber, self._n, self._spacing, self.plaxis, *self._orientation, *self._position, *self._direction) def __repr__(self): return '{} #{}'.format(self.__str__(), id(self))