Source code for xopto.mcvox.mcsurface.probe.lineararray

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

from typing import Tuple

import numpy as np

from xopto.mcvox import mcobject
from xopto.mcvox import cltypes
from xopto.mcvox.mcutil.fiber import MultimodeFiber
from xopto.mcvox.mcutil import boundary, geometry

from ..base import SurfaceLayoutAny, TOP, BOTTOM


[docs]class LinearArray(SurfaceLayoutAny):
[docs] @staticmethod def cl_type(mc: mcobject.McObject) -> cltypes.Structure: T = mc.types class ClLinearArray(cltypes.Structure): ''' Structure that that represents a surface layout in the Monte Carlo simulator core. Fields ------ transformation: mc_matrix3f_t Transforms coordinates from Monte Carlo to the surface layout. cutout_transformation: mc_matrix3f_t Transforms for the cutout to match the fiber array orientation. position: mc_point2f_t Position of the center of the fiber array. first_position: mc_point2f_t The center of the first optical fiber in the array. delta_position: mc_point2f_t Distance vector between two neighboring optical fibers. core_r_squared: mc_fp_t Squared radius of the optical fiber core. core_n: mc_fp_t Refractive index of the optical fiber core. cladding_r_squared: mc_fp_t Squared radius of the optical fiber cladding. cladding_n: mc_fp_t Refractive index of the optical fiber cladding. cutout_width_half: mc_fp_t half of the cutout width. cutout_height_half: mc_fp_t Half of the cutout height. cutout_n: mc_fp_t Refractive index of the probe cutout. probe_r_squared: mc_fp_t Squared radius of the optical fiber probe. probe_reflectivity: mc_fp_t Reflectivity of the probe stainless steel surface. ''' _fields_ = [ ('transformation', T.mc_matrix3f_t), ('cutout_transformation', T.mc_matrix2f_t), ('position', T.mc_point2f_t), ('first_position', T.mc_point2f_t), ('delta_position', T.mc_point2f_t), ('core_spacing', T.mc_fp_t), ('cladding_r_squared', T.mc_fp_t), ('cladding_n', T.mc_fp_t), ('core_r_squared', T.mc_fp_t), ('core_n', T.mc_fp_t), ('cutout_width_half', T.mc_fp_t), ('cutout_height_half', T.mc_fp_t), ('cutout_n', T.mc_fp_t), ('probe_r_squared', T.mc_fp_t), ('probe_reflectivity', T.mc_fp_t), ] return ClLinearArray
[docs] def cl_declaration(self, mc: mcobject.McObject) -> str: ''' Structure that defines the surface layout in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() return '\n'.join(( 'struct MC_STRUCT_ATTRIBUTES Mc{}SurfaceLayout{{'.format(Loc), ' mc_matrix3f_t transformation;' ' mc_matrix2f_t cutout_transformation;' ' mc_point2f_t position;' ' mc_point2f_t first_position;' ' mc_point2f_t delta_position;' ' mc_fp_t core_spacing;', ' mc_fp_t cladding_r_squared;', ' mc_fp_t cladding_n;', ' mc_fp_t core_r_squared;', ' mc_fp_t core_n;', ' mc_fp_t cutout_width_half;', ' mc_fp_t cutout_height_half;', ' mc_fp_t cutout_n;', ' mc_fp_t probe_r_squared;', ' mc_fp_t probe_reflectivity;', '};' ))
[docs] def cl_implementation(self, mc: mcobject.McObject) -> str: ''' Implementation of the surface layout in the Monte Carlo simulator. ''' loc = self.location Loc = loc.capitalize() return '\n'.join(( 'void dbg_print_{}_surface_layout('.format(loc), ' __mc_surface_mem const Mc{}SurfaceLayout *layout){{'.format(Loc), ' dbg_print("Mc{}SurfaceLayout - LinearArray surface layout:");'.format(Loc), ' dbg_print_matrix3f(INDENT "transformation:", &layout->transformation);', ' dbg_print_matrix2f(INDENT "cutout_transformation:", &layout->cutout_transformation);', ' dbg_print_point2f(INDENT "position:", &layout->position);', ' dbg_print_point2f(INDENT "first_position:", &layout->first_position);', ' dbg_print_point2f(INDENT "delta_position:", &layout->delta_position);', '', ' dbg_print_float(INDENT "core_r_squared (mm2):", layout->core_r_squared*1e6f);', ' dbg_print_float(INDENT "core_n:", layout->core_n);', '', ' dbg_print_float(INDENT "cladding_r_squared (mm2):", layout->cladding_r_squared*1e6f);', ' dbg_print_float(INDENT "cladding_n:", layout->cladding_n);', '', ' dbg_print_float(INDENT "cutout_width_half (mm):", layout->cutout_width_half*1e3f);', ' dbg_print_float(INDENT "cutout_height_half (mm):", layout->cutout_height_half*1e3f);', ' dbg_print_float(INDENT "cutout_n:", layout->cutout_n);', '', ' dbg_print_float(INDENT "probe_r_squared (mm2):", layout->probe_r_squared*1e6f);', ' dbg_print_float(INDENT "probe_reflectivity", layout->probe_reflectivity);', '};', '', 'inline int mcsim_{}_surface_layout_handler('.format(loc), ' McSim *mcsim, mc_fp_t *n2){', '', ' dbg_print_status(mcsim, "{} LinearArray fiber array layout hit");'.format(Loc), '', ' __mc_surface_mem const Mc{}SurfaceLayout *layout = '.format(Loc), ' mcsim_{}_surface_layout(mcsim);'.format(loc), '', ' mc_fp_t dx, dy, r_squared;', ' mc_point3f_t mc_pos, layout_pos;', '', ' mc_fp_t fiber_x = layout->first_position.x;', ' mc_fp_t fiber_y = layout->first_position.y;', '', ' pragma_unroll_hint({})'.format(self._n), ' for(mc_size_t index=0; index < {}; ++index){{'.format(self._n), ' mc_pos.x = mcsim_position_x(mcsim) - fiber_x;', ' mc_pos.y = mcsim_position_y(mcsim) - fiber_y;', ' mc_pos.z = FP_0;', '', ' mc_matrix3f_t transformation = layout->transformation;', ' transform_point3f(&transformation, &mc_pos, &layout_pos);', ' dx = layout_pos.x;', ' dy = layout_pos.y;', ' r_squared = dx*dx + dy*dy;', ' if(r_squared <= layout->cladding_r_squared){', ' if(r_squared <= layout->core_r_squared){', ' /* hit the fiber core */', ' *n2 = layout->core_n;', ' dbg_print_size_t("{} LinearArray layout fiber core hit:", index);'.format(Loc), ' return MC_SURFACE_LAYOUT_CONTINUE;', ' };', ' *n2 = layout->cladding_n;', ' dbg_print_size_t("{} LinearArray layout fiber cladding hit:", index);'.format(Loc), ' return MC_SURFACE_LAYOUT_CONTINUE;', ' };', '', ' fiber_x += layout->delta_position.x;', ' fiber_y += layout->delta_position.y;', ' };', '', ' /* The cutout of the stainless steel probe. */', ' mc_pos.x = mcsim_position_x(mcsim) - layout->position.x;', ' mc_pos.y = mcsim_position_y(mcsim) - layout->position.y;', ' mc_matrix2f_t transformation = layout->cutout_transformation;', ' transform_point2f(&transformation, &mc_pos, &layout_pos);', ' dx = mc_fabs(layout_pos.x);', ' dy = mc_fabs(layout_pos.y);', ' if(dx <= layout->cutout_width_half && dy < layout->cutout_height_half){', ' *n2 = layout->cutout_n;', ' dbg_print("{} LinearArray layout cutout hit");'.format(Loc), ' return MC_SURFACE_LAYOUT_CONTINUE;', ' };', '', ' /* The tip of the stainless steel probe. */', ' dx = mc_pos.x;', ' dy = mc_pos.y;', ' r_squared = dx*dx + dy*dy;' ' if(r_squared <= layout->probe_r_squared){', ' mcsim_reverse_direction_z(mcsim);', ' mcsim_set_weight(', ' mcsim, mcsim_weight(mcsim)*layout->probe_reflectivity);', ' dbg_print("{} LinearArray layout stainles steel hit");'.format(Loc), ' return MC_REFLECTED;', ' };', '', ' dbg_print("{} LinearArray layout missed");'.format(Loc), ' return MC_SURFACE_LAYOUT_CONTINUE;', '};', ))
def __init__(self, fiber: MultimodeFiber, n=1, spacing: float = None, orientation: Tuple[float, float] = (1.0, 0.0), diameter: float = 0.0, reflectivity: float = 0.0, cutout: Tuple[float, float] = (0.0, 0.0), cutoutn=1.0, position: Tuple[float, float] = (0.0, 0.0), direction: Tuple[float, float, float] = (0.0, 0.0, 1.0)): ''' Optical fiber probe layout for a linear array of optical fibers that are optionally tilted (direction parameter). The optical fibers are always polished in a way that forms a tight optical contact with the surface of the sample. Parameters ---------- fiber: MultimodeFiber Optical properties of the fibers. All optical fibers of the array are considered the same. n: int The number of optical fibers in the linear array. This option is a compile-time feature and caanot be changed once the surface layout object is created. spacing: float Spacing between the optical fibers. If spacing is None, a tight layout is used with spacing set to the outer diameter of the fiber cladding. diameter: float Outer diameter of the optical fiber probe. Set to 0 if unused. reflectivity: float Reflectivity of the optical fiber probe stainless steeel surface. cutout: (float, float) Cutout size as a tuple (width, height). Setting any of the cutout width or height to 0 turns off the cutout. The cutout is rotated to match the orientation of the linear fiber array. cutoutn: float Refractive index of the cutout. Used only if the cutout surface is nonzero. orientation: (float, float) Vector that points in the direction of the linear fiber array. By default the fibers are place in the direction of x axis, i.e. vector (1.0, 0.0). The orientation must point in the direction from the first to the last optical fiber! position: (float, float) Position of the center of the linear fiber array and of the opticalfiber probe probe. direction: (float, float, float) Reference direction / orientation of the optical fibers. Fibers are oriented in this direction and polished to form a tight optical contact with the sample (the fiber cross sections are ellipsoids if the direction is not perpendicular, i.e different from (0, 0, 1). ''' super().__init__() if isinstance(fiber, LinearArray): la = fiber fiber = la.fiber n = la.n spacing = la.spacing orientation = la.orientation diameter = la.diameter reflectivity = la.reflectivity cutout = la.cutout cutoutn = la.cutoutn position = la.position direction = la.direction nphotons = la.nphotons raw_data = np.copy(la.raw) else: nphotons = 0 n = max(int(n), 1) raw_data = np.zeros((n,)) if spacing is None: spacing = fiber.dcladding self._n = 0 self._fiber = None self._spacing = 0.0 self._diameter = 0.0 self._reflectivity = 1.0 self._cutout = np.zeros((2,)) self._cutout_n = 0.0 self._orientation = np.array((1.0, 0.0)) self._direction = np.array((0.0, 0.0, 1.0)) self._position = np.array((0.0, 0.0)) self._set_fiber(fiber) self._n = max(int(n), 1) self._set_spacing(spacing) self._set_diameter(diameter) self._set_reflectivity(reflectivity) self._set_cutout(cutout) self._set_cutout_n(cutoutn) self._set_orientation(orientation) self._set_position(position) self._set_direction(direction) def _get_fiber(self) -> Tuple[float, float]: return self._fiber def _set_fiber(self, value: float or Tuple[float, float]): self._fiber = value fiber = property(_get_fiber, _set_fiber, None, 'Properties of the optical fibers used by the layout.') def _get_n_fiber(self) -> int: return self._n n = property(_get_n_fiber, None, None, 'Number of optical fiber in the linear array.') def _get_spacing(self) -> float: return self._spacing def _set_spacing(self, value:float): self._spacing = float(value) spacing = property(_get_spacing, _set_spacing, None, 'Spacing between the centers of the optical fibers') def _get_diameter(self) -> float: return self._diameter def _set_diameter(self, diameter: float): self._diameter = max(float(diameter), 0.0) diameter = property(_get_diameter, _set_diameter, None, 'Outer diameter of the optical fiber probe tip.') def _get_reflectivity(self) -> float: return self._reflectivity def _set_reflectivity(self, reflectivity: float): self._reflectivity = min(max(float(reflectivity), 0.0), 1.0) reflectivity = property(_get_reflectivity, _set_reflectivity, None, 'Reflectivity of the stainless steel optical fiber ' 'probe tip.') def _get_orientation(self) -> Tuple[float, float]: return self._orientation def _set_orientation(self, orientation: Tuple[float, float]): self._orientation[:] = orientation norm = np.linalg.norm(self._orientation) if norm == 0.0: raise ValueError('Orientation vector norm/length must not be 0!') self._orientation *= 1.0/norm orientation = property(_get_orientation, _set_orientation, None, 'Orientation / direction of the linear fiber array.') def _get_cutout(self) -> Tuple[float, float]: return self._scutout def _set_cutout(self, cutout: Tuple[float, float]): self._cutout[:] = np.maximum(0.0, cutout) cutout = property(_get_cutout, _set_cutout, None, 'Size of the cutout (width, height) that accommodates ' 'the optical fibers. Set to (0, 0) if unused.') def _get_cutout_n(self) -> float: return self._cutout_n def _set_cutout_n(self, n: float): self._cutout_n = max(float(n), 1.0) cutoutn = property(_get_cutout_n, _set_cutout_n, None, 'Refractive index of the cutout fill.') def _get_position(self) -> Tuple[float, float]: return self._position def _set_position(self, value: float or Tuple[float, float]): self._position[:] = value position = property(_get_position, _set_position, None, 'Position of the fiber array center as a tuple (x, y).') def _get_direction(self) -> Tuple[float, float, float]: return self._direction def _set_direction(self, direction: Tuple[float, float, float]): self._direction[:] = direction norm = np.linalg.norm(self._direction) if norm == 0.0: raise ValueError('Direction vector norm/length must not be 0!') self._direction *= 1.0/norm direction = property(_get_direction, _set_direction, None, 'Reference direction of the fibers in the layout.')
[docs] def check(self) -> bool: ''' Check if the configuration has errors and raise exceptions if so. ''' if self._spacing < self.fiber.dcore: raise ValueError('Spacing between the optical fibers is smaller ' 'than the diameter of the fiber core!') if self._diameter != 0.0 and \ self._diameter < self._spacing*(self._n - 1) + \ self._fiber.dcladding: raise ValueError('Diameter of the optical fiber probe too small ' 'to accommodate the fibers!') if np.prod(self._cutout) != 0.0: if self.cutout[1] < self._fiber.dcladding or \ self._cutout[0] < (self._n - 1)*self._spacing + \ self._fiber.dcladding: raise ValueError('The cutout is too small to accommodate the ' 'optical fiber array!') if self._diameter != 0.0 and \ np.linalg.norm(self._cutout) >= self._diameter: raise ValueError('The optical fiber probe is too small to ' 'accomodate the cutout.') return True
[docs] def fiber_position(self, index: int) -> Tuple[float, float]: ''' Returns the position of the fiber center as a tuple (x, y). Parameters ---------- index: int Fiber index from 0 to n -1. Returns ------- position: (float, float) The position of the fiber center as a tuple (x, y). ''' if index >= self._n or index < -self._n: raise IndexError('The fiber index is out of valid range!') left = self._position - self._orientation*self._spacing*(self._n - 1)*0.5 return tuple(left + self._spacing*self._orientation*int(index))
[docs] def update(self, other: 'LinearArray' or dict): ''' Update this surface layout configuration from the other surface layout. The other surface layout must be of the same type as this surface layout or a dict with appropriate fields. Parameters ---------- other: LinearArray or dict This surface layout is updated with data from this parameter. ''' if isinstance(other, LinearArray): self.fiber = other.fiber self.spacing = other.spacing self.diameter = other.diameter self.reflectivity = other.reflectivity self.cutout = other.cutout self.cutoutn = other.cutoutn self.position = other.position self.direction = other.direction elif isinstance(other, dict): self.fiber = other.get('fiber', self.fiber) self.spacing = other.get('spacing', self.spacing) self.diameter = other.get('diameter', self.diameter) self.reflectivity = other.get('reflectivity', self.reflectivity) self.cutout = other.get('cutout', self.cutout) self.cutoutn = other.get('cutoutn', self.cutoutn) self.position = other.get('position', self.position) self.direction = other.get('direction', self.direction)
[docs] def cl_pack(self, mc: mcobject.McObject, target: cltypes.Structure = None) \ -> cltypes.Structure: ''' Fills the structure (target) with the data required by the Monte Carlo simulator. See the :py:meth:`LinearArray.cl_type` method for a detailed list of fields. Parameters ---------- mc: mcobject.McObject Monte Carlo simulator instance. target: cltypes.Structure Ctypes structure that is filled with the source data. Returns ------- target: cltypes.Structure Filled structure received as an input argument or a new instance if the input argument target is None. ''' if target is None: target_type = self.cl_type(mc) target = target_type() adir = self._direction[0], self._direction[1], abs(self._direction[2]) T = geometry.transform_base(adir, (0.0, 0.0, 1.0)) target.transformation.fromarray(T) target.position.fromarray(self._position) target.first_position.fromarray(self.fiber_position(0)) target.delta_position.fromarray(self._orientation*self._spacing) target.core_r_squared = 0.25*self._fiber.dcore**2 target.core_n = self._fiber.ncore target.cladding_r_squared = 0.25*self._fiber.dcladding**2 target.cladding_n = self._fiber.ncladding target.probe_r_squared = 0.25*self.diameter**2 target.probe_reflectivity = self.reflectivity T = geometry.rotation_matrix_2d(self._orientation, [1.0, 0.0]) target.cutout_transformation.fromarray(T) target.cutout_width_half = self._cutout[0]*0.5 target.cutout_height_half = self._cutout[1]*0.5 target.cutout_n = self._cutout_n return target
[docs] def todict(self) -> dict: ''' Save the surface layout configuration to a dictionary. Use the :meth:`LinearArray.fromdict` method to create a new surface layout instance from the returned data. Returns ------- data: dict Accumulator configuration as a dictionary. ''' return { 'type':'LinearArray', 'fiber': self._fiber.todict(), 'n': self._n, 'spacing': self._spacing, 'orientation': self._orientation.tolist(), 'diameter': self._diameter, 'reflectivity': self._reflectivity, 'cutout': self._cutout.tolist(), 'cutoutn': self._cutoutn, 'position':self._position.tolist(), 'direction':self.direction.tolist(), }
[docs] @staticmethod def fromdict(data: dict) -> 'LinearArray': ''' Create an accumulator instance from a dictionary. Parameters ---------- data: dict Dictionary created by the :py:meth:`LinearArray.todict` method. ''' layout_type = data.pop('type') if layout_type != 'LinearArray': raise TypeError( 'Expected a "LinearArray" type bot got "{}"!'.format( layout_type)) fiber = data.pop('fiber') fiber = MultimodeFiber.fromdict(fiber) return LinearArray(fiber, **data)
def __str__(self): return 'LinearArray(fiber={}, n={}, spacing={}, orientation=({}, {}) '\ 'diameter={}, reflectivity={}, cutout=({}, {}), cutoutn={}, '\ 'position=({}, {}), direction=({}, {}, {}))'.format( self._fiber, self._n, self._spacing, *self._orientation, self._diameter, self._reflectivity, *self._cutout, self._cutoutn *self._position, *self._direction) def __repr__(self): return '{} #{}'.format(self.__str__(), id(self))