Source code for xopto.pf.hg

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

import numpy as np

from .pfbase import PfBase


[docs]class Hg(PfBase): def __init__(self, g: float): ''' Henyey-Greenstein scattering phase function constructor. Parameters ---------- g: float Anisotropy factor. Examples -------- Henyey-Greenstein scattering phase function for anisotropy factors g = {0, 0.3 0.5, 0.8, 0.9, 0.95}. >>> import numpy as np >>> from matplotlib import pyplot as pp >>> >>> cos_theta = np.linspace(-1.0, 1.0, 1000) >>> >>> pp.figure() >>> for g in [0, 0.3, 0.5, 0.8, 0.9, 0.95]: >>> pp.semilogy(cos_theta, Hg(g)(cos_theta), label='g={}'.format(g)) >>> pp.legend() ''' super().__init__() eps = np.finfo(np.float64).eps self._g = max(min(g, 1.0 - eps), -1.0 + eps) def __call__(self, costheta: float or np.ndarray) -> float or np.ndarray: ''' Call method of the Henyey-Greenstein scattering phase function object. Parameters ---------- costheta: float or np.ndarray Scattering angle cosines at which the scattering phase function is evaluated. Returns ------- f: float or np.ndarray Scattering phase function at the specified scattering angle cosines. ''' return 0.5*(1.0 - self._g*self._g)/ \ (1 + self._g*self._g - 2*self._g*costheta)**1.5
[docs] def g(self, n): ''' Overloads the :py:meth:`PfBase.g` method of the base class with an analytical solution. ''' return self._g**n
[docs] def gs(self, last): ''' Overloads the :py:meth:`PfBase.gs` method of the base class with an analytical solution. ''' return self._g**np.arange(last + 1, dtype=np.float64)
[docs] def fastg(self, n, **kwargs): ''' Overloads the :py:meth:`PfBase.g` method of the base class with an analytical solution. ''' return self._g**n
[docs] def fastgs(self, last, **kwargs): ''' Overloads the :py:meth:`PfBase.gs` method of the base class with an analytical solution. ''' return self._g**np.arange(last + 1, dtype=np.float64)
def __repr__(self): return 'Hg({})'.format(self._g)