Source code for xopto.pf.mgk

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

import numpy as np

from .pfbase import PfBase
from .gk import Gk

[docs]class MGk(PfBase): def __init__(self, gg: float, a: float, b: float): ''' Modified Gegenbauer kernel scattering phase function. Parameters ---------- gg: float Parameter of the Gegenbauer kernel scattering phase function (:math:`|gg| <= 1`). a: float Parameter of the Gegenbauer kernel scattering phase function (:math:`a > - 1/2`). A value of 0.5 produces the Henyey-Greenstein scattering phase function. b: float Fractional contribution of the Gegenbauer kernel scattering phase function. Examples -------- Modified Gegenbauer kernel scattering phase function fo anisotropy factors g = {0, 0.3 0.5, 0.8, 0.9, 0.95}, a = 0.5 and b=0.5. >>> import numpy as np >>> from matplotlib import pyplot as pp >>> >>> cos_theta = np.linspace(-1.0, 1.0, 1000) >>> a = 0.5 >>> >>> pp.figure() >>> for g in [0.0, 0.3, 0.5, 0.8, 0.9, 0.95]: >>> pp.semilogy(cos_theta, MGk(g, 0.5)(cos_theta), label='b=0.5, g={}'.format(g)) >>> pp.legend() ''' super().__init__() self._b = np.clip(float(b), 0.0, 1.0) self._gk = Gk(gg, a) def __call__(self, costheta: float or np.ndarray) -> float or np.ndarray: ''' Call method of the Modified Gegenbauer kernel scattering phase function. Parameters ---------- costheta: float or np.ndarray Scattering angle cosines at which the scattering phase function is evaluated. Returns ------- f: float or np.ndarray Phase function at the specified deflection angle cosines. ''' return self._b*self._gk(costheta) + \ (1.0 - self._b)*3.0/(2.0)*costheta**2 def __repr__(self): return 'MGk({}, {}, {})'.format(self._gk._gg, self._gk._a, self._b)