Source code for xopto.pf.mhg

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

import numpy as np

from .pfbase import PfBase
from .hg import Hg

[docs]class MHg(PfBase): def __init__(self, g: float, b: float): ''' Modified Henyey-Greenstein scattering phase function. Parameters ---------- g: float Anisotropy factor. b: float Fractional contribution of the Henyey-Greenstein scattering phase function. Examples -------- Modified Henyey-Greenstein scattering phase function fo anisotropy factors g = {0, 0.3 0.5, 0.8, 0.9, 0.95} and b=0.5. >>> import numpy as np >>> from matplotlib import pyplot as pp >>> >>> cos_theta = np.linspace(-1.0, 1.0, 1000) >>> >>> pp.figure() >>> for g in [0.0, 0.3, 0.5, 0.8, 0.9, 0.95]: >>> pp.semilogy(cos_heta, MHg(g, 0.5)(cos_theta), label='b=0.5, g={}'.format(g)) >>> pp.legend() ''' super().__init__() self._b = np.clip(float(b), 0.0, 1.0) self._hg = Hg(g) self._rayleigh_gs_data = np.array((1.0, 0.0, 0.4)) def _rayleigh_g(self, n: int) -> float: if n <= 2: return self._rayleigh_gs_data[n] else: return 0.0 def _rayleigh_gs(self, n: int) -> np.ndarray: gs = np.zeros((n + 1,)) n = int(n) gs[:min(n, 3)] = self._rayleigh_gs_data[:min(n, 3)] return gs
[docs] def g(self, n: int) -> float: ''' Overloads the :py:meth:`PfBase.g` method of the base class with an analytical solution. ''' return self._b*self._hg.g(n) + (1.0 - self._b)*self._rayleigh_g(n)
[docs] def gs(self, last: int) -> np.ndarray: ''' Overloads the :py:meth:`PfBase.gs` method of the base class with an analytical solution. ''' return self._b*self._hg.gs(last) + \ (1.0 - self._b)*self._rayleigh_gs(last)
[docs] def fastg(self, n: int, **kwargs) -> float: ''' Overloads the :py:meth:`PfBase.fastg` method of the base class with an analytical solution. ''' return self.g(n)
[docs] def fastgs(self, last: int, **kwargs) -> np.ndarray: ''' Overloads the :py:meth:`PfBase.fastgs` method of the base class with an analytical olution. ''' return self.gs(last)
def __call__(self, costheta: float or np.ndarray) -> float or np.ndarray: ''' Call method of the Modified Henyey-Greenstein scattering phase function. Parameters ---------- costheta: float or np.ndarray Scattering angle cosines at which the scattering phase function is evaluated. Returns ------- f: float or np.ndarray Scattering phase function at the specified scattering angle cosines. ''' return self._b*self._hg(costheta) + \ (1.0 - self._b)*3.0/(2.0)*costheta**2 def __repr__(self): return 'MHg({}, {})'.format(self._hg._g, self._b)