Source code for xopto.pf.util.pfmapmie

# -*- coding: utf-8 -*-
################################ Begin license #################################
# Copyright (C) Laboratory of Imaging technologies,
#               Faculty of Electrical Engineering,
#               University of Ljubljana.
#
# This file is part of PyXOpto.
#
# PyXOpto is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyXOpto is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyXOpto. If not, see <https://www.gnu.org/licenses/>.
################################# End license ##################################

from typing import Tuple
import os.path

import numpy as np

from .pfmapbase import PfMap2DBase
from xopto.pf.miepolystyrene import MieFractalPolystyrene, MiePolystyrene
from xopto import DATA_PATH


[docs]class MieFractalPolystyreneMap(PfMap2DBase): DEFAULT_MAP_FILE = 'fractal_mie_polystyrene_map.npz' XLABEL = '$\\alpha$' YLABEL = '$\\lambda (nm)$' PLOTSCALEFACTORX = 1.0 PLOTSCALEFACTORY = 1e9
[docs] @classmethod def precalculate(cls, n: int = 100, filename: str = None, verbose: bool = True): ''' Precalculate fractal Mie polystyrene scattering phase function lookup table. Parameters ---------- n: int Number of steps along the scattering phase function parameters. filename: str Output file or None to save as the default lookup table. verbose: bool Turn on verbose progress report. ''' if verbose: print('\nCreating MieFractalPolystyreneMap map:') fracmiepolymap = \ MieFractalPolystyreneMap(alpha=np.linspace(2, 6, 30), wavelength=np.linspace(0.4e-6, 1e-6, 60), ng=15, ncostheta=5000, nd=1000) if filename is None: filename = cls.default_data_file() fracmiepolymap.save(filename=filename)
def __init__(self, alpha: np.ndarray = None, wavelength: np.ndarray = None, ng: int = 15, drange: Tuple[float, float] = (5e-9, 30e-6), nd: int = 1000, filename: str = None, ncostheta: int = None): ''' Prepares maps of the first ng Legendre moments of the MieFractalPolystyrene (FMIE) phase function, over the specified range of the FMIE parameters alpha and wavelength. If ng >= 2, a map of gamma is preapred and if ng >= 3 maps of delta and sigma are prepared as well. The maps are used to obtain an initial estimate when calculateng the FMIE phase function parameters from given Legendre moments, gamma and/or delta. Parameters ---------- alpha: np.ndarray vector A Vector of equally spaced values defining the grid density of the alpha parameter of the Fractal Mie phase function. wavelength: np.ndarray vector A Vector of equally spaced values defining the grid density of the a wavelength parameter of Fractal Mie phase function [m]. drange: list, tuple of two float Finite range (m) of the particle diameter used to compute the scattering phase function given as (dmin, dmax). If None, default a range [5e-9, 30e-6] m is used. nd: int Number of equally spaced control points between dmin and dmax that are used to estimate the phase function. A fixed-step Simpson numerical integration is used to estimate the phase function at the given deflection angle cosines. If nd is None, adaptive-step numerical integration is used (note that the computational time might increase dramatically!!!). ng: int Maps are created for the first ng Legendre moments. If ng >= 2, a map of gamma is prepared and if g >= 3 maps of delta and sigma are prepared as well. filename: str File with saved data. The values of all the other parameters are ignored and restored from the file. ncostheta: int Number of nodes used to compute the Legendre moments. Use a large number (> 1000) for accurate results. If None, adaptive step integration is used, which is accurate but can become slow. Note ---- The value of parameter ng should be >> 3 to accurately estimate the value of parameter sigma. Examples -------- Prepares maps of gamma and delta, and estimates the FMIE parameters given a) g and gamma are known b) gamma and delta are known. >>> import numpy as np >>> >>> m = MieFractalPolystyreneMap(np.linspace(2, 6, 30), np.linspace(0.4e-6, 1e-6, 60), ng=3) >>> alpha, wavelength = m.invgammadelta(gamma=2.2, delta=3.5) >>> print('gamma=2.2, delta=3.5 ==>', 'alpha:', alpha, 'wavelength:', wavelength) >>> alpha, wavelength = m.invgamma(g=0.8, gamma=2.2) >>> print('g=0.8, gamma=2.2 ==>', 'alpha:', alpha, 'wavelength:', wavelength) >>> Load maps from the default file included in the data/pf folder. >>> m = MieFractalPolystyreneMap.fromfile() >>> alpha, wavelength = m.invgammadelta(gamma=2.2, delta=3.5) >>> print('gamma=2.2, delta=3.5 ==>', 'alpha:', alpha, 'wavelength:', wavelength) >>> alpha, wavelength = m.invgamma(g=0.8, gamma=2.2) >>> print('g=0.8, gamma=2.2 ==>', 'alpha:', alpha, 'wavelength:', wavelength) >>> ''' if alpha is None: alpha = np.linspace(2.0, 6.0, 30) if wavelength is None: np.linspace(0.4e-6, 1e-6, 60) super().__init__(param1=alpha, param2=wavelength, ng=ng, pf=MieFractalPolystyrene, filename=filename, ncostheta=ncostheta, drange=drange, nd=nd)
[docs] def alpha(self) -> np.ndarray: ''' Returns a vector of points defining the grid of alpha parameter. ''' return self.param1()
[docs] def wavelength(self) -> np.ndarray: ''' Returns a vector of points defining the grid of wavelengths. ''' return self.param2()
[docs] def alpha_grid(self) -> np.ndarray: ''' Returns a 2D map (meshgrid) of the first scattering phase function parameter alpha. ''' return self.grid1()
[docs] def wavelength_grid(self) -> np.ndarray: ''' Returns a 2D map (meshgrid) of the second parameter of the scatterin phase function wavelength. ''' return self.grid2()
[docs]class MiePolystyreneMap(PfMap2DBase): DEFAULT_MAP_FILE = 'mie_polystyrene_map.npz' XLABEL = '$d (nm)$' YLABEL = '$\\lambda (nm)$' PLOTSCALEFACTORX = 1e9 PLOTSCALEFACTORY = 1e9
[docs] @classmethod def precalculate(cls, n: int = 100, filename: str = None, verbose: bool = True): ''' Precalculate monodisperse Mie polystyrene scattering phase function lookup table. Parameters ---------- n: int Number of steps along the scattering phase function parameters. filename: str Output file or None to save as the default lookup table. verbose: bool Turn on verbose progress report. ''' if verbose: print('\nCreating MiePolystyrene map:') miepolymap = MiePolystyreneMap(diameter=np.linspace(0.2e-6, 5e-6, n), wavelength=np.linspace(0.4e-6, 1e-6, n), ng=15) if filename is None: filename = cls.default_data_file() miepolymap.save(filename=filename)
def __init__(self, diameter: np.ndarray = None, wavelength: np.ndarray = None, ng: int = 15, filename: str = None): ''' Prepares maps of the first ng Legendre moments of the MiePolystyrene scattering phase function, over the specified range of spherical particle diameters and wavelengths. If ng >= 2, a map of gamma is prepared and if ng >= 3 maps of delta and sigma are prepared as well. The maps are used to obtain an initial estimate when calculating the MIE scattering phase function parameters from the given Legendre moments, gamma and/or delta. Parameters ---------- diameter: np.ndarray vector A Vector of equally spaced values defining the grid density of the micro-sphere diameter parameter of Mie phase function[m]. wavelength: np.ndarray vector A Vector of equally spaced values defining the grid density of the a wavelength parameter of Mie phase function[m]. ng: int Maps are created for the first ng Legendre moments. If ng >= 2, a map of gamma is prepared and if g >= 3 maps of delta and sigma are prepared as well. filename: str File with saved data. The values of all the other parameters are ignored and restored from the file. ncostheta: int Number of nodes used to compute the Legendre moments. Use a large number (> 1000) for accurate results. If None, adaptive step integration is used, which is accurate but can become slow. Note ---- The value of parameter ng should be >> 3 to accurately estimate the value of parameter sigma. Examples -------- Prepares maps of gamma and delta, and estimates the MIE parameters given a) g and gamma are known b) gamma and delta are known. >>> import numpy as np >>> >>> m = MiePolystyreneMap(np.linspace(0.2e-6, 5e-6, 100), np.linspace(0.4e-6, 1e-6, 100), ng=3) >>> diameter, wavelength = m.invgammadelta(gamma=2.2, delta=3.5) >>> print('gamma=2.2, delta=3.5 ==>', 'diameter:', diameter, 'wavelength:', wavelength) >>> diameter, wavelength = m.invgamma(g=0.8, gamma=2.2) >>> print('g=0.8, gamma=2.2 ==>', 'diameter:', diameter, 'wavelength:', wavelength) >>> Load maps from the default file included in the data/pf folder. >>> m = MiePolystyreneMap.fromfile() >>> diameter, wavelength = m.invgammadelta(gamma=2.2, delta=3.5) >>> print('gamma=2.2, delta=3.5 ==>', 'diameter:', diameter, 'wavelength:', wavelength) >>> diameter, wavelength = m.invgamma(g=0.8, gamma=2.2) >>> print('g=0.8, gamma=2.2 ==>', 'diameter:', diameter, 'wavelength:', wavelength) >>> ''' if diameter is None: diameter = np.linspace(0.2e-6, 5e-6, 100) if wavelength is None: wavelength = np.linspace(0.4e-6, 1e-6, 100) super().__init__(param1=diameter, param2=wavelength, ng=ng, pf=MiePolystyrene, filename=filename)
[docs] def diameter(self) -> np.ndarray: ''' Returns a vector of points defining the grid of diameters. ''' return self.param1()
[docs] def wavelength(self) -> np.ndarray: ''' Returns a vector of points defining the grid of wavelengths. ''' return self.param2()
[docs] def diameter_grid(self): ''' Returns a 2D map (meshgrid) of the first parameter of the scattering phase function (diameter). ''' return self.grid1()
[docs] def wavelength_grid(self): ''' Returns a 2D map (meshgrid) of the second parameter of the scattering phase function (wavelength). ''' return self.grid2()